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The isotropic-liquid crystal phase equilibrium was investigated for aqueous sodium chloride (NaC1) 
solutions of an ionic double-helical polysaccharide, xanthan. The phase boundary concentrations between 
isotropic and biphasic regions and between biphasic and cholesteric regions were very low at small NaC1 
concentration Cs but increased sigmoidally with increasing C, to approach those for the corresponding 
neutral polymers. The phase boundary concentrations were reproduced fairly accurately by the Onsager 
theory modified by Odijk to worm-like polyelectrolyte solutions with a Philip-Wooding electrostatic 
potential for charged cylinders. 
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INTRODUCTION 

Xanthan is an ionic polysaccharide produced by a plant 
pathogen. Previous dilute-solution studies 1-6 revealed 
that xanthan dissolves in aqueous salt as a rigid double- 
stranded helix. Thus, this polysaccharide can be regarded 
as an example of a rigid polyelectrolyte. 

Rinaudo et al. 7 found that an aqueous solution of 
xanthan forms a cholesteric mesophase above a polymer 
concentration as low as 3.5wt%. Such a low critical 
concentration is characteristic of lyotropic liquid crystals 
of rigid polyelectrolytes. For example, the aqueous 
solution of tobacco mosaic virus (TMV) has a very low 
critical concentration s'9. Onsager 1° showed that the 
electrostatic repulsive interaction is responsible for the 
low critical concentration of TMV. 

As pointed out by Odijk t~ in his review, the isotropic- 
liquid crystal phase behaviour for such a charged polymer 
system, especially its ionic strength dependence, has not 
been studied in detail. In this paper, we present the 
isotropic-liquid crystal phase boundary concentration 
for aqueous xanthan as a function of added salt (NaC1) 
concentration. Further, the experimental data obtained 
are compared with Onsager's theory ~° modified by 
Odijk ~1 for semiflexible polyelectrolytes. At the com- 
pletion of the present study, we noticed a recent paper 
by Fraden et al. ~2, who found a similar charge effect on 
the phase diagram for TMV in phosphate buffer. 

EXPERIMENTAL 

Following the procedure established before 3, a com- 
mercial xanthan sample (Kelco's Keltrol) was sonicated, 
purified and repeatedly fractionated by fractional precipi- 
tation. An appropriate middle fraction was chosen and 
was further divided into two parts using isotropic-liquid 
crystal phase separation t3. The sample recovered from 
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the liquid-crystal phase was converted to Na salt form 
and used for phase separation experiments. Its molecular 
weight was estimated to be 6.14 x 105 using the established 
viscosity-molecular weight relation 5. 

The isotropic-liquid crystal phase separation experi- 
ment was done at 25°C and at added NaC1 molar 
concentration C, ranging from 0.005 to 1 M by the 
procedure employed beforet4; a biphasic solution of 
xanthan was prepared in a calibrated stoppered tube, 
kept standing for 1 day at 25°C, and centrifuged at 
4000 rpm at 25°C to attain complete phase separation. 
The volume of each separated phase was determined from 
its column height. The polymer mass concentration c of 
the solution was calculated from: 

c=w/[(1-W)Vo + WV,] 
with w being the polymer weight fraction and Vo the 
solvent specific volume; the partial specific volume v, of 
the polymer was taken to be 0.571 cm a g-1 irrespective 
of C~. 

RESULTS 

Figure I shows the relation between the average polymer 
concentration c and the relative volume • of the isotropic 
phase in biphasic mixtures of xanthan with different Cs. 
The data points for each Cs almost follow a straight line. 
The extrapolations of this line to • = 1 and 0 give the 
phase boundary concentrations ci between isotropic and 
biphasic regions and ca between liquid-crystal and 
biphasic regions, respectively. 

Figure 2 depicts the C~ dependence of ci and c a 
obtained. At low Cs, both ci and ca are very low, 
indicating that aqueous xanthan forms a cholesteric 
mesophase at low polymer concentrations. As Cs increases, 
c~ and c a increase sigmoidally, approaching higher values 
comparable to those for neutral rigid polymer solutions 
(e.g. schizophyllan 15 and polypeptide 16 solutions). This 
strong C, dependence of the phase boundary concentration 
demonstrates the importance of the electrostatic potential 
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Figure 1 Plots of the average polymer concentration c vs. the volume fraction ¢ 
of the isotropic phase for different Cs at 25°C 
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Figure 2 Salt concentration dependences of the phase boundary 
concentrations ct and c= for aqueous xanthan at 25°C 

for the isotropic-liquid crystal phase equilibrium in 
aqueous xanthan. The recent data of Fraden et al. ~2 for 
TMV in phosphate buffer showed a similar dependence. 

DISCUSSION 

Onsager 1° presented a theory for the isotropic-liquid 
crystal phase equilibrium in a rod-like polyelectrolyte 
solution. Assuming the phase boundary concentrations 
ci and ca to be very low, he used the second virial 
approximation to formulate the Helmholtz free energy 
AF of the solution: 

AF/nkBT=I~o/kBT- 1 +In c'-I-ad-B2c' (1) 

where n is the number of rod-like molecules, kB the 
Boltzmann constant, T the absolute temperature,/~o the 

standard chemical potential of the solute, c' the number 
density of rod-like molecules, tr the orientational entropy 
loss upon formation of the liquid-crystal phase, and B2 
the second virial coefficient. 

Odijk 11 extended the Onsager theory to worm-like 
polyelectrolytes, following Khokhlov and Semenov's 
procedure 17, which was originally applied to neutral 
semiflexible polymers. That is, he replaced tr in equation 
(1) by trKs, which contains a conformational entropy loss 
as well as the orientational entropy loss of worm-like 
chains due to the formation of liquid crystal. With the 
Onsager trial function for the orientational distribution 
function f(t)) of the tangent vector of the worm-like 
chain, trKs is given by: 

((~-l)N/2+ln(~/4) (~N>> 1) (2a) 
ffKS 

In ct - 1 + (~ - 1)N/3 (~tN << 1) (2b) 

where N is the number of Kuhn's statistical segments per 
molecule and ct is the orientational parameter contained 
in the Onsager trial function. 

Further, Odijk proposed to approximate B2 for 
worm-like polyelectrolytes by that for rod-like poly- 
electrolytes, which is given by: 

B2=-½ f f [po(r)+Pe,(7)]f(t'2)f(.')dt~df~' (3) 

Here, flo(7) and fle~(7) are the irreducible cluster integrals 
for the hard core and the electrostatic potential of the 
charged rod, respectively; 7 represents the angle between 
two rods oriented at f~ and Q'. For a rod with length L 
and hard-core diameter d: 

and 

tic(7) = - 2L2dl sin 71 (4) 

i 
oo 

flel(7)=2L2dlsin 71 [exp(-wel/kBT)- 1] dx (5) 
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Figure 3 Comparison of the experimental data (circles) with the 
modified Onsager theory (curves) for worm-like polyelectrolytes: full 
curves, calculated with r at infinite dilution (equation (7)); broken 
curves, calculated with the effective x at finite polymer concentration 
(see 'Appendix') 

where W=l is the electrostatic interaction between two rods 
and x is the shortest distance between the centre lines of 
the two rods. Because w¢~ appears in the Mayer f 
function, the exact functional form of w¢~ at small x is 
not needed, because there the f function takes a value 
very close to - 1 .  Thus, as proposed by Stroobants et 
al. 18, Philip and Wooding's solution 19 of the Poisson- 
Boltzmann equation for the charged cylinder can provide 
a relevant expression for w=~:* 

w,~/keT = A exp ( -  xx)/Isin ~1 (6) 

Here, x is the reciprocal of the Debye screening length 
and A is a function of xd/2, which is defined in Philip 
and Wooding's paper 19. At infinite dilution of polymer, 
x can be calculated from: 

1£ 2 = 8 nQn~ (7) 

where Q is the Bjerrum length and ns is the number 
density of added salt (1-1 electrolyte). To a first 
approximation, this equation may be used to calculate 
w=~ at finite polymer concentrations (for a refinement of 
this approximation, see the 'Concluding Remarks' and 
'Appendix'). 

We calculated the isotropic-liquid crystal phase boun- 
dary concentrations c~ and ca from the phase coexistence 
equations and the stabilization condition of the aniso- 
tropic phase, which were all derived from AF given in 
equation (1) with tr replaced by trKs. The free energy AF 
contains four molecular parameters, i.e. L, N, d and the 
linear charge density v of the polymer. The values of L 
and N for our sample were 316.5nm and 1.32, which 
were estimated from its molecular weight M with the 
molecular weight ML per unit contour length and the 
persistence length q of xanthan taken to be 1940cm -1 
and 120 nm, respectively5; L = M / M  L, N = L/2q. It should 

* Originally, Onsager used a solution of the Poisson-Boltzmann 
equation for two parallel charged plates to estimate w=t for two charged 
cylinders, and further neglected the ), dependence of wel on orientational 
averaging in equation (3) for the anisotropic phase. The latter 
approximation was removed by Stroobants et al. 18, whom we followed 
to calculate B 2 in the anisotropic phase 

be noted that q of xanthan is insensitive to Cs at 
0.005-1.0 M (ref. 20). The values of d and v were taken 
to be 2.2nm and 3.0nm -1, respectively, from the 
molecular model of xanthan double helix 21 with degree 
of pyruvation of 0.4. As in the previous paper 22, the 
values of c~ and ca at N=1.32 were evaluated by 
interpolating c~ and ca calculated for N = 0  (using 
equation (2b)) and N >i 1.5 (equation (2a)) at fixed L. 

Figure 3 compares the theoretical curves (full curves) 
for ci and ca calculated as above? with our experimental 
data indicated by circles. Here, we note that the 
theoretical curves have been constructed with no adjust- 
able parameters. The experimental sigmoidal increases 
of ci and ca with increasing C~ are successfully reproduced 
by the theory, and the agreement between theory and 
experiment is almost quantitative. 

CONCLUDING REMARKS 

We have shown that the Onsager theory 1° modified by 
Odijk 11 for semiflexible polyelectrolytes agrees fairly well 
with our experimental data on aqueous xanthan when 
the Philip-Wooding (PW) electrostatic potential 19 is 
used. As mentioned before, the modified Onsager theory 
is based on the second virial approximation. Thus, the 
above agreement demonstrates that the isotropic-liquid 
crystal phase behaviour in semiflexible polyelectrolyte 
solutions can be described fairly accurately by considering 
up to the second virial term in the free energy. The same 
conclusion was obtained 14 for solutions of neutral 
polymers of moderate stiffness q >~ 30 nm, and confirmed 
theoretically by comparison of the Khokhlov-Semenov 
theory 17 with the second virial approximation and the 
scaled particle theory containing all virial terms 22. 
(Fraden et al. z2 favoured a scaled theory due to Lee 23 
rather than the Onsager theory to interpret their TMV 
data. However, we notice that the axial ratio of the TMV 
is as small as 15, which may be beyond the range in 
which the Onsager theory can be used 11.) 

Recently, Nicolai and Mande124 reported that their 
experimental data of the second virial coefficient for a 
short DNA sample in aqueous NaC1 compared more 
favourably with the Debye-Hiickel-Manning (DHM) 
potential 2s considering ion condensation than with the 
PW potential 19 (equation (6)). However, the use of the 
DHM potential instead of the PW potential gives 
considerably higher ci and ca than our experimental data 
at higher Cs, and thus Nicolai and Mandel's results seem 
to be inconsistent with ours. 

Both calculations of the second virial coefficient and 
the phase boundary concentration need the expression 
of the screening length x-  1. For the former, equation (7) 
(x at infinite dilution) is available, while for the latter, it 
is just approximate because the polymer concentrations 
ci and ca are not necessarily low and are different from 
each other. Therefore we estimated the finite concen- 
tration effect on x and recalculated c i and c a by the 
method given in the Appendix. The broken curves in 
Figure 3 represent c~ and ca calculated from the modified 

t The integration in equation (5) can be done analytically only on con- 
dition that A e x p ( - r d ) >  2. This condition corresponds to C, < 0.8 M, 
so that the values of ci and ca were not calculated for Cs > 0.8 M except 
for infinite C,, where the phase boundary concentrations can be 
calculated from Khokhlov and Semenov's theoryl 7 for neutral polymers 
(cf. the horizontal bars on the right side of Figure 3) 
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Onsager theory with the effective screening length. It can 
be seen that these curves do not deviate appreciably from 
the corresponding full curves, which reveals that the use 
of x at infinite dilution is a good approximation in the 
calculation of ci and ca. At present, we cannot reconcile 
the inconsistency between our phase diagram data and 
Nicolai and Mandel's second virial coefficient data. In 
order to elucidate which potential is relevant, the second 
virial coefficient in addition to the phase boundary 
concentrations should be measured for aqueous solutions 
of xanthan as a function of C~. 
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APPENDIX 

To calculate the electrostatic interaction W=l between two 
polyelectrolyte molecules, the reciprocal of the Debye 
screening length x must be given. In the text, we used 
equation (7), neglecting a finite polymer concentration 
effect on x. This appendix presents a method of estimating 
x in a solution with a finite polymer concentration and 
of calculating c i and ca with that x. In what follows, we 
consider an aqueous solution that contains a 1-1 
electrolyte and a polyelectrolyte with zp univalent negative 
charges per molecule and counter-ions the same as the 
cation from the 1-1 electrolyte. 

Liquid crystal of aqueous xanthan: T. Sato et al. 

At a finite polymer concentration, the ionic atmosphere 
about a test polyion should be different from that at 
infinite dilution, because the mobile ion distribution is 
affected by the presence of the other polyions. From the 
following consideration, it turns out that the polyions 
exclude mobile ions from their vicinity. That is, at the 
Donnan equilibrium, mobile ions are excluded from the 
polyelectrolyte solution side and the salt concentration 
difference between the solvent and the solution sides 
reaches Fn= at equilibrium. Here, F is the Donnan salt 
exclusion coefficient and n= is the number density of 
charges on the polymers (i.e. n~ = zpc'). Thus, to equilibrate 
the polyelectrolyte solution with the salt concentration 
ns, the solvent side must possess a salt concentration of 
ns + Fn~. This implies that, on the polyelectrolyte solution 
side, polyions exclude mobile ions from their vicinity and 
increase the salt concentration of the surrounding solvent 
domain to n~+Fn~. Therefore, the test polyion can be 
regarded as being embedded in a solvent with salt 
concentration n~ + Fn=, and the effective Debye screening 
length in the solution with polymer and solvent concen- 
trations n= and n~, respectively, may be given by: 

x 2 = 8rcQ(ns + Fn~) (A1) 

instead of equation (7). For  the expression of F, we use 
Manning's theory 25 for polyelectrolyte solutions, that is: 

F = (44)- 1 (A2) 

where ~ is the Manning charge density parameter, which 
equals 2.1 for xanthan with degree of pyruvation of 0.4. 
Strictly speaking, the Manning theory is a 'limiting law' 
that can be applied only to a solution with low ionic 
strength, so that the use of equation (A2) may lead to 
some error at higher C~. However, since it will turn out 
later that the finite polymer concentration effect on x 
does not affect ci and ca at high C~, the error from equation 
(A2) may not need to be taken as serious. 

When a polyelectrolyte solution system separates into 
an isotropic phase and a liquid-crystal phase, each phase 
should possess different ns from the initial salt concen- 
tration nso in the solvent. Thus, in the calculation of ci 
and ca, n~ in equation (A1) must not be equated to n~0. 
From the equilibrium condition for mobile ions, we 
obtain: 

2 2 7 +_insi(nsi q-n©i)=T +ansa(nsa q-nea ) (A3) 

where ~+ is the mean activity coefficient and the 
subscripts i and a represent the quantity for the isotropic 
phase and liquid-crystal phase, respectively. Again from 
Manning's theory 25, ~+ is given by: 

~2 = [ ( X +  1)/(~X + 1)] e x p [ X / ( X + 2 ) ]  (A4) 

where X = ~ - I n , / n ~ .  Substituting equation (A4) into 
equation (A3), we obtain: 

n2i(Xi d- 1)Xi- 2 e x p [ -  X i / ( X  i dff 2)] 

=n2a(Xa+l)X~ -2 e x p [ - X J ( X a + 2 ) ]  (A5) 

At c = ci, where the amount  of the liquid-crystal phase is 
infinitesimal, n~i is equal to n~o, while n~a is calculated 
from equation (A5) using the given n~i and n=a. On the 
other hand, at c = c a, where the amount  of the isotropic 
phase is infinitesimal, n~a--n~o and nsi is calculated from 
equation (A5). 

Equation (A1) shows that the isotropic and liquid- 
crystal phases have different x represented by x~ and xa, 
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respectively, since n, and n= are different in the two phases. 
Taking this difference into account, we calculated the 
phase boundary concentration ci using the following 
iteration method. First, the zero-order approximations 
to the phase boundary concentrations ci(0) (or nei(0)) and 
ca(0) (or n=a(0)) were calculated using both xi and xa 
calculated from equation (7) with n~= nso. In the next 
step, x i and xa, which were calculated from equation (A2) 
with n=i-----n=i(O), n=a=n=a(O), nsi=nso and n~a obtained 

from equation (A5), were used to calculate the first 
approximations n=i(1) and n=a(1 ). The same process was 
iterated until the phase boundary concentrations con- 
verged to some values. The convergent value for ci was 
taken to be the final ci. The phase boundary concentration 
ca can also be calculated by the same procedure, except 
for putting n,a = nso, instead of nsi = nso in the above 
calculation. 
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